

CAN bus protection

Is this presentation suited for you?

Where do you stand with CAN bus protection?

Beginner?

I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.

Click here to continue to next slide

Overview

Intermediate?

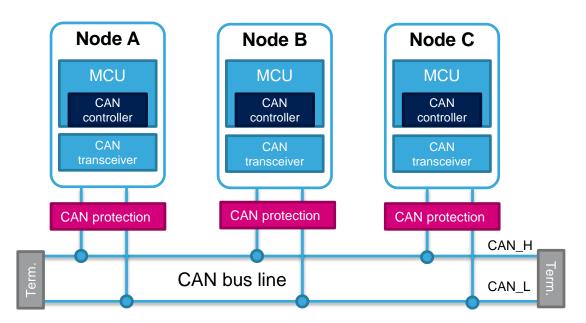
I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.

Click here to open new presentation

Basic

Advanced?

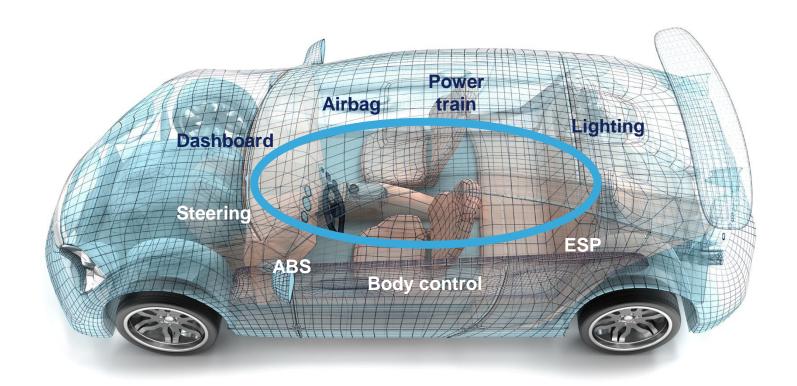
I am very familiar with this subject. I would like to deepen my knowledge and become an expert.


Click here to open new presentation

In depth

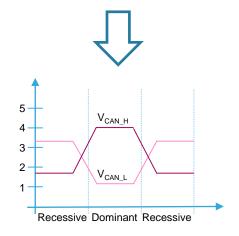
Basics on CAN bus

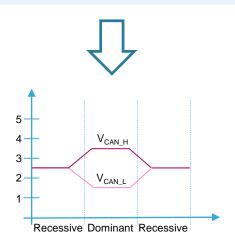
- CAN stands for Controller Area Network
- It is very popular in the automotive industry
- It is a serial bi-directional half-duplex multi-master communication bus
- 2 lines:
 - CAN H (CAN High)
 - CAN_L (CAN Low)
- 2 standards:
 - Low-speed, fault-tolerant
 - High-speed


Benefits of CAN

- Cost-effective
- Light-weight
- Reliable / transmission safety
- Information available for all nodes

Where is CAN 4


 As the CAN bus is reliable, it is used to connect together most of the modules in the car, including safety and critical functions

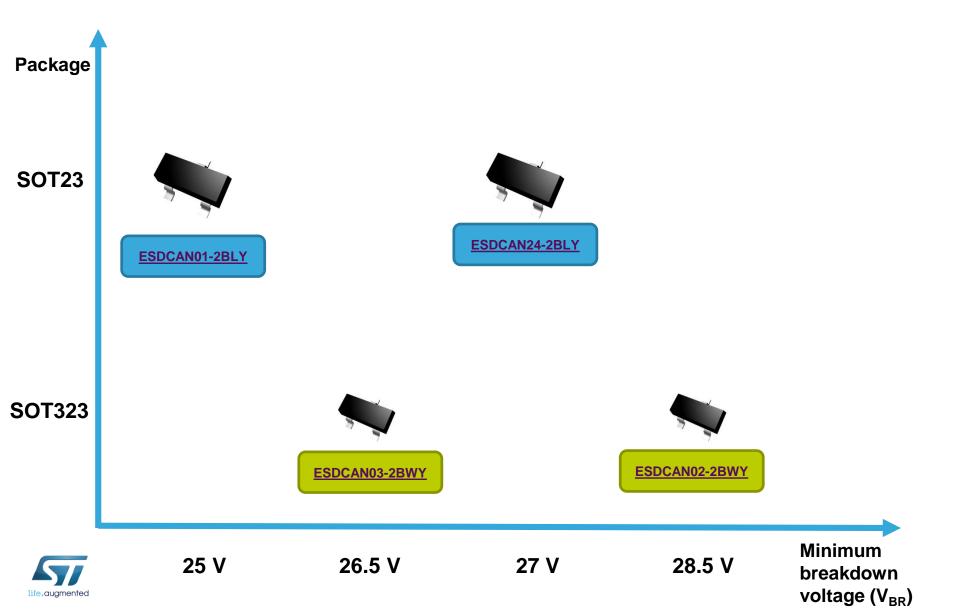


Basics on CAN bus

Parameters	High-speed CAN	Low-speed CAN
Physical layer standards	ISO 11898-2	ISO 11898-3
Data rate	Up to 1 Mbit/s	Up to 125 kbit/s
Maximum length	30 m	500 m
Termination	120 Ω shunt	$2.2~k\Omega$ serial on each line
Recessive voltage level	$V_{CAN_H} = 1.75 \text{ V} $ $V_{CAN_L} = 3.25 \text{ V}$	$V_{CAN_H} = V_{CAN_L} = 2.5 \text{ V}$
Dominant voltage level	$V_{CAN_H} = 4 V$ $V_{CAN_L} = 1 V$	$V_{CAN_H} - V_{CAN_L} = 2 V$

Why protection is needed?

- Automotive systems require a high level of robustness and must be 100% reliable when they control safety devices.
- The automotive industry has defined standards to guarantee the robustness of car embedded electronics.


Why protection is needed?

CAN protection must comply with the following main standards

Hazards	Туре	Standards
ESD protection	Voltage spikes due to electro-static discharges.	ISO 10605
Surge protection	Voltage spikes due to switching processes (influenced by capacitance and inductances of the wiring harness)	ISO 7637-3 pulse 3a/3b
Jump start	Application of 24 V on all inputs to simulate a jump start with a 24 V battery	ISO 16750
Reverse battery	Application of -28 V (during 60 s) to simulate a reversed battery connection in case of using an auxiliary starting device	ISO 16750

CAN protection portfolio

ESDCAN series versus standards

Hazards	Standards	ESDCAN24-2BLY	ESDCAN01-2BLY	ESDCAN02-2BWY	ESDCAN03-2BWY
ESD protection	ISO 10605	+30 kV contact	+30 kV contact	+30 kV contact	+30 kV contact
Surge protection	ISO 7637-3 pulse 3a/3b	✓	✓	✓	
Jump start	ISO 16750	V _{BR} min (reverse) = 27 V	V _{BR} min (reverse) = 25 V	V _{BR} in (reverse) = 28.5 V	V _{BR} in (reverse) = 26.5 V
Reverse battery	ISO 16750	V _{BR} min (forward) = 27 V	V _{BR} min (forward) = 25 V	V _{BR} min (forward) = 28.5 V	V _{BR} min (forward) = 26.5 V

ESDCAN series: quality of protection 10

- Not only protection features must comply with standards, but they must efficiently protect against surges.
- The quality of protection features is measured by its ability to clamp overvoltages and overcurrent, thus protect the IC (CAN controller) against EOS / ESD
- The lower the clamping voltage, the greater the circuit's better ESD. immunity.

Let's go further

In-depth information Protection of automotive electronics - guidelines for design and component selection Application note AN2689

Pspice models

Selection & sampling

Our **product selector**: Automotive dataline ESD protection

Our **selection guide**: Automotive-grade protection devices and rectifiers (.pdf)

